使用场景:Google 的 simhash 算法
//通过大量测试,simhash用于比较大文本,比如500字以上效果都还蛮好,距离小于3的基本都是相似,误判率也比较低。 //从我的经验,如果我们假定N是每个块的大小,M是重叠的字符的数目,N = 4和M = 3是最好的选择
public class SimHashAnalyser : IAnalyser { private const int HashSize = 32; public float GetLikenessValue(string needle, string haystack) { var needleSimHash = this.DoCalculateSimHash(needle); var hayStackSimHash = this.DoCalculateSimHash(haystack); return (HashSize - GetHammingDistance(needleSimHash, hayStackSimHash)) / (float)HashSize; } private static IEnumerable DoHashTokens(IEnumerabletokens) { var hashedTokens = new List (); foreach (string token in tokens) { hashedTokens.Add(token.GetHashCode()); } return hashedTokens; } private static int GetHammingDistance(int firstValue, int secondValue) { var hammingBits = firstValue ^ secondValue; var hammingValue = 0; for (int i = 0; i < 32; i++) { if (IsBitSet(hammingBits, i)) { hammingValue += 1; } } return hammingValue; } private static bool IsBitSet(int b, int pos) { return (b & (1 << pos)) != 0; } private int DoCalculateSimHash(string input) { ITokeniser tokeniser = new OverlappingStringTokeniser(4, 3); var hashedtokens = DoHashTokens(tokeniser.Tokenise(input)); var vector = new int[HashSize]; for (var i = 0; i < HashSize; i++) { vector[i] = 0; } foreach (var value in hashedtokens) { for (var j = 0; j < HashSize; j++) { if (IsBitSet(value, j)) { vector[j] += 1; } else { vector[j] -= 1; } } } var fingerprint = 0; for (var i = 0; i < HashSize; i++) { if (vector[i] > 0) { fingerprint += 1 << i; } } return fingerprint; } } public interface IAnalyser { float GetLikenessValue(string needle, string haystack); } public interface ITokeniser { IEnumerable Tokenise(string input); } public class FixedSizeStringTokeniser : ITokeniser { private readonly ushort tokensize = 5; public FixedSizeStringTokeniser(ushort tokenSize) { if (tokenSize < 2 || tokenSize > 127) { throw new ArgumentException("Token 不能超出范围"); } this.tokensize = tokenSize; } public IEnumerable Tokenise(string input) { var chunks = new List (); int offset = 0; while (offset < input.Length) { chunks.Add(new string(input.Skip(offset).Take(this.tokensize).ToArray())); offset += this.tokensize; } return chunks; } } public class OverlappingStringTokeniser : ITokeniser { private readonly ushort chunkSize = 4; private readonly ushort overlapSize = 3; public OverlappingStringTokeniser(ushort chunkSize, ushort overlapSize) { if (chunkSize <= overlapSize) { throw new ArgumentException("Chunck 必须大于 overlap"); } this.overlapSize = overlapSize; this.chunkSize = chunkSize; } public IEnumerable Tokenise(string input) { var result = new List (); int position = 0; while (position < input.Length - this.chunkSize) { result.Add(input.Substring(position, this.chunkSize)); position += this.chunkSize - this.overlapSize; } return result; } }
使用:
const string HayStack = "中国香港………………"; const string Needle = "中国香港 2013………………"; IAnalyser analyser = new SimHashAnalyser(); var likeness = analyser.GetLikenessValue(Needle, HayStack); Console.Clear(); Console.WriteLine("Likeness: {0}%", likeness * 100); Console.ReadKey();